Results
The SureFlex® sheath performed better than the Agilis™ NxT sheath on all performance and durability tests conducted. Compared to the Agilis™ NxT sheath, the SureFlex® sheath retained as much as 13 times the contact force at the sheath tip, 3 times the initial curve ROM, and remained completely intact, whereas the Agilis™ NxT sheath failed after an average of 14 cycles.

Conclusion
As compared with the St. Jude Medical Agilis™ NxT Steerable Introducer, the Baylis Medical SureFlex® Steerable Guiding Sheath offers more consistent sheath tip contact force, superior retention of curve range-of-motion (ROM), as well as greater durability and resistance to failure.
and on consistent mechanical force to support ablation catheters in generating adequate RF lesions. This benchtop study evaluates the ability of a sheath to retain full ROM over extensive use. Contact force at the tip of fatigued sheaths was evaluated in the 0.1 - 0.2 N range, discussed above. Sheath mechanical failure was tested to evaluate device durability.

METHODS

Two types of steerable transeptal sheaths were tested: the Baylis Medical SureFlex® Steerable Guiding Sheath and the St. Jude Medical Agilis™ NxT Steerable Introducer. Sheaths were assembled with the Baylis Medical SureFlex® dilator and the Baylis Medical NRG® Transseptal Needle, and were pre-conditioned at 37°C for two hours to simulate physiological conditions for benchtop testing.

Contact force consistency – Contact force at maximum curve extension was evaluated using a benchtop model to represent mechanical fatigue (Figure 1). Five SureFlex® sheaths and three Agilis™ NxT sheaths were loaded with a dilator and transeptal needle, then fully articulated bidirectionally to maximum extension ten times to achieve mechanical fatigue. The needle and dilator were then replaced with an electrophysiology catheter (Biosense Webster ThermoCool SmartTouch® Catheter), and the sheath subsequently articulated unidirectionally twenty times while measuring the contact force at the tip with a force gauge after each articulation.

Retention of curve range-of-motion – To evaluate a sheath’s ability to maintain full ROM, five SureFlex® sheaths and three Agilis™ NxT sheaths were curved bidirectionally to their full extent of articulation. Extended sheaths were traced on a paper to measure curve size. Sheaths were then assembled with a dilator and transeptal needle, placed in a 37°C water bath to simulate clinical-use conditions, and curved repeatedly up to 100 cycles while tracing the curve radius in both directions at each step (Figure 2). Traces were analyzed to measure the curve angle at maximum articulation, and determine curve retention capacity as a function of the percentage drop in ROM at each cycle.

Durability – Durability was assessed by repeatedly articulating sheaths unidirectionally to their maximum curvature extension until failure, or up to 300 cycles, using an Instron® Testing System. Five SureFlex® sheaths and six Agilis™ NxT sheaths assembled with needle and dilator were tested.

Figures represent average performance data of multiple samples. Statistical analysis was performed using Student’s t-test, where significance was considered to be p<0.05.

RESULTS & DISCUSSION

CONTACT FORCE CONSISTENCY

After fatigue conditioning, the SureFlex® sheath maintained its contact force, whereas the Agilis™ NxT sheath lost 52% of its initial contact force, and dropped below 0.1 N on average. (Figure 3). Continuing up to 20 articulation cycles, the SureFlex® sheath showed significantly higher contact force than the Agilis™ NxT sheath (p=0.007). The SureFlex® sheath retained 88% of its initial contact force (still remaining above 0.1 N, on average) whereas the Agilis™ NxT sheath only retained 7% of its initial contact force.

Findings from contact force testing also suggested that the SureFlex® sheath retains more curve ROM after fatigue conditioning and 20 articulation cycles with an ablation catheter (Figure 4).

Figure 3 Average contact force over sheath steering cycles

Figure 4 Tip curvature (photographs)

RETENTION OF CURVE RANGE-OF-MOTION

Additional testing indicated that after 100 articulation cycles with dilator and needle, the SureFlex® sheath retained significantly more of its initial ROM than the Agilis™ NxT sheath (p<0.001), retaining 89% of its ROM compared to only 27% with the Agilis™ NxT device. Aggregate data shown in Figure 5.

Figure 5 Percent range-of-motion retained over 100 steering cycles with dilator and needle
DURABILITY

The SureFlex® sheath remained intact after 300 cycles of articulation with dilator and needle, whereas the Agilis™ NxT sheath failed after an average of 14 cycles (Figure 6).

“The SureFlex® sheath remained intact after 300 cycles...”

CONCLUSION

As compared with the St. Jude Medical Agilis™ NxT Steerable Introducer, the Baylis Medical SureFlex® Steerable Guiding Sheath offers more consistent sheath tip contact force, superior retention of curve range-of-motion, as well as greater durability and resistance to failure.

REFERENCES