ABSTRACT

Purpose
Through dial and handle rotation, steerable sheaths function to facilitate access to target sites inside the heart, which is especially useful in hard-to-reach areas and complex anatomies. It has been suggested that the precise movements offered by steerable sheaths contribute to improved outcomes in atrial fibrillation procedures, as compared to non-steerable sheaths. The steering precision of a transseptal sheath may therefore contribute to the success of a procedure. This study measures and compares the steering precision of two types of transseptal steerable sheaths.

Methods
The Baylis Medical® SureFlex™ Steerable Guiding Sheath and the St. Jude Medical Agilis™ NxT Steerable Introducer were assessed on three aspects of steering precision: 1) torque transfer (axial rotation), 2) tip deflection, and 3) tactile dial feedback. Benchtop studies were used to replicate the torque applied to both the handle and dial of steerable sheaths.

Results
Compared to the Agilis™ NxT Sheath, the SureFlex™ Sheath 1) delivered a more precise 1:1 torque transfer along the length of the sheath from handle to tip, 2) demonstrated a more linear force-rotation profile, with two times more consistency in force-to-turn the dial, and 3) required 61.6% less force-to-turn the dial in the neutral zone, while demonstrating a more consistent neutral zone.

Conclusion
The SureFlex™ Steerable Guiding Sheath offers more precise handling, more responsive steering, and a more consistent neutral zone as compared to the Agilis™ NxT Steerable Introducer.

INTRODUCTION

Transseptal puncture is used to gain access to the left side of the heart for a number of cardiac procedures such as pulmonary vein isolation, mitral valve repair, and left atrial appendage occlusion.1 Once left heart access is established, catheters and other medical devices can be introduced through a transseptal sheath.

Both fixed and steerable sheaths can be used for these procedures; however, steerable sheaths have been shown to possess superior maneuverability. Steerable sheaths provide control of the angle between the shaft and distal tip, facilitating access to target sites, especially in hard-to-reach areas and complex anatomies.2 The precise movements demonstrated by steerable sheaths may contribute to improved patient outcomes and require significantly less fluoroscopy time during a procedure.3,4
Precise Steering: A comparison study using the SureFlex™ Steerable Guiding Sheath

STEERABLE SHEATH TECHNIQUES

This study will explore three distinct aspects of steering precision:

1) Torque Transfer (Axial rotation) – Precise handling

Torque transfer is achieved when rotation of the sheath’s proximal handle translates to a corresponding degree of rotation at the distal tip. A direct 1:1 ratio contributes to precise handling via control and maneuverability of the distal tip.

2) Tip deflection – Responsive steering

Tip deflection is achieved via dial rotation. A linear relationship between dial rotation and force-to-turn the dial contributes to smooth steering. A responsive steering mechanism allows physicians to navigate complex anatomies and reach target locations.

3) Tactile dial – Consistent neutral zone

The user receives tactile feedback via resistance in the dial. In steerable sheaths with tactile dial feedback, the force-to-turn the dial increases when steering towards maximum deflection. The dial neutral zone is a range in which the dial can be turned (in either direction) before the distal tip of the sheath begins to deflect. The tactile feedback provided by a consistent neutral zone allows physicians to intuitively confirm tip deflection, which may reduce their reliance on fluoroscopy during sheath delivery and positioning.

METHODS

The Baylis Medical™ SureFlex™ Steerable Guiding Sheath and the St. Jude Medical Agilis™ NxT Steerable Introducer were assessed on three aspects of steering precision: torque transfer (axial rotation), tip deflection, and tactile dial feedback.

1) Torque Transfer (Axial rotation) – Precise handling

A physical, to-scale model of a human circulatory system was used to test axial torque transfer in each sheath. Rotation of the sheath’s proximal handle (input) was measured relative to the degree of rotation at the distal tip (output) within the model circulatory system (Figure 1). Handles were rotated a full 360° to assess the maximum rotational capabilities of each sheath. Five SureFlex™ Sheaths and three Agilis™ NxT Sheaths (medium curve size) were tested.

2) Tip deflection – Responsive steering

The degree of dial rotation and corresponding force-to-turn the dial were measured when deflecting the tip from straight to maximum deflection. Data was plotted as a force-rotation graph. Mathematical analysis† was used to determine how much each plot deviates from a linear profile. The more linear the profile, the more consistent and smooth the steering response. Testing was performed on five SureFlex™ Sheaths and five Agilis™ NxT Sheaths (medium curve size).

Figure 1. Axial rotation test setup
3) Tactile dial – Consistent neutral zone

The force-to-turn the dial in the neutral zone was measured to determine consistency in a sample of 15 SureFlex™ Sheaths and 10 Agilis™ NxT Sheaths (medium curve size). Force-to-turn was measured using a custom rotational fixture (Figure 2).

Unless otherwise noted, figures represent the average performance in a data set with standard deviation error bars. Statistical analysis was performed using Student’s t-test, where significance was considered to be p<0.05.

RESULTS AND DISCUSSION

1) Torque Transfer (Axial rotation) – Precise handling

The SureFlex™ Sheath consistently delivered a 1:1 torque transfer along the length of the sheath, over a 360° rotation of the handle, whereas the Agilis™ NxT Sheath broke in two out of three cases at a rotation as low as 135° (Figure 3). Upon breaking, the Agilis™ NxT Sheaths no longer responded to input. Less efficient torque transfer may result in abrupt catheter movements, which have the potential to extend procedure time through increased difficulty reaching and remaining at target ablation sites.5

“The SureFlex™ Sheath consistently delivered a 1:1 torque transfer [...] over a 360° rotation of the handle...”

2) Tip deflection – Responsive steering

The SureFlex™ Sheath demonstrated a more linear force-rotation profile (Figure 4), with two times more consistency in force-to-turn the dial compared to the Agilis™ NxT Sheath (p<0.05). A consistent linear force-rotation profile suggests more responsive steering, fewer uncontrolled movements, and smoother dial rotation. This may contribute to greater control of distal tip deflection and overall steering precision.
CONCLUSION

The SureFlex™ Steerable Guiding Sheath offers more precise handling, more responsive steering, and a more consistent neutral zone as compared to the Agilis™ NxT Steerable Introducer.
SureFlex™ Steerable Guiding Sheath

CAUTION: Federal law (USA) restricts this device to sale by or on the order of a physician. Rx only. Prior to use, please see the complete “Instructions for Use” for more information on Indications, Contraindications, Warnings, Precautions, Adverse Events, and Operator’s Instructions.

INDICATIONS FOR USE: The SureFlex™ Steerable Guiding Sheath kit is indicated for introducing various cardiovascular catheters to the heart, including the left side of the heart through the interatrial septum.

CONTRAINDICATIONS: There are no known contraindications for this device.

WARNINGS: • Laboratory staff and patients can undergo significant x-ray exposure during interventional procedures due to the continuous usage of fluoroscopic imaging. This exposure can result in acute radiation injury as well as increased risk for somatic and genetic effects. Therefore, adequate measures must be taken to minimize this exposure. The use of echocardiography is recommended. • The SureFlex™ Steerable Guiding Sheath kit is intended for single patient use only. Do not attempt to sterilize and reuse the SureFlex™ Steerable Guiding Sheath kit. Reuse can cause patient injury and/or the communication of infectious disease(s) from one patient to another. • Care should be taken to ensure that all air is removed from the communication lumen prior to angioplasty or stenting procedures. • Elastic force should be monitored throughout the angioplasty procedure. Excessive force may damage the guidewire and may cause patient injury. • The SureFlex™ Steerable Guiding Sheath kit is intended to provide operator guidance for the advancement of catheters and related tools. The sheath, dilator, and guidewire advancement should be done under fluoroscopic guidance. Echocardiographic guidance is also recommended. If resistance is encountered, DO NOT use excessive force to advance or withdraw the device. • Avoid deflecting distal end of sheath during delivery and removal, otherwise damage to vessels may occur. • Do not attempt to use the guidewire with electrocautery tools. • Do not reshape distal tip or curve of the guidewire. Excessive bending or kinking of the distal curve may damage the integrity of the wire or coating and lead to patient injury. • Laboratory staff and patients can undergo significant x-ray exposure during interventional procedures due to the continuous usage of fluoroscopic imaging. This exposure can result in acute radiation injury as well as increased risk for somatic and genetic effects. Therefore, adequate measures must be taken to minimize this exposure. The use of echocardiography is recommended. • The SureFlex™ Steerable Guiding Sheath kit is intended for single patient use only. Do not attempt to sterilize and reuse the SureFlex™ Steerable Guiding Sheath kit. Reuse can cause patient injury and/or the communication of infectious disease(s) from one patient to another. • Care should be taken to ensure that all air is removed from the sheath before infusing through the side port. • Do not attempt direct percutaneous insertion of the sheath without the dilator as this may cause vessel injury. • Maintain continuous hemodynamic monitoring throughout procedure. • Provide continuous heparinized saline infusion while the introducer remains in vessel. • DO NOT attempt to insert or retract the guidewire through a metal cannula or a percutaneous needle, which may damage the guidewire and may cause patient injury.

PRECAUTIONS: • Careful manipulation must be performed to avoid cardiac damage, or tamponade. Sheath, dilator and guidewire advancement should be done under fluoroscopic guidance. Echocardiographic guidance is also recommended. If resistance is encountered, DO NOT use excessive force to advance or withdraw the device. • Avoid deflecting distal end of sheath during delivery and removal, otherwise damage to vessels may occur. • Do not attempt to use the guidewire with electrocautery tools. • Do not reshape distal tip or curve of the guidewire. Excessive bending or kinking of the distal curve may damage the integrity of the wire or coating and lead to patient injury.

ADVERSE EVENTS: Adverse events that may occur while using the SureFlex™ Steerable Guiding Sheath include: • Infection • Air embolus • Local nerve damage • Vasovagal reaction • Dissection • Vessel spasm • Air embolism formation • Atrial septal defect • Pseudoaneurysm • Acute puncture • Arrhythmias • Perforation and/or tamponade • Hematoma • Hemorrhage • Catheter entrapment • Embolic events • Stroke • Valve damage • Myocardial infarction • Pericardial/pleural effusion • Premature/defibrillator lead displacement • Pulmonary edema • Coronary artery spasm and/or damage • Vessel trauma

REFERENCES


* Baylis Medical Company Inc. is a wholly owned subsidiary of Boston Scientific Corporation.
† In bench testing conducted at Boston Scientific, a ‘Maneuverability Factor’ analysis was developed to mathematically determine the deviation from a linear profile for each plot.